
A Generic Complete Anytime Beam Search for Optimal Decision Tree

Harold Silvère Kiossou 1, Siegfried Nijssen 1,2, Pierre Schaus 1

1UCLouvain, ICTEAM, Louvain-la-Neuve, Belgium
2KU LEUVEN, DTAI, Leuven, Belgium

harold.kiossou@uclouvain.be , siegfried.nijssen@kuleuven.be, pierre.schaus@uclouvain.be

Abstract
Finding an optimal decision tree that minimizes classifica-
tion error is known to be NP-hard. While exact algorithms
based on MILP, CP, SAT, or dynamic programming guar-
antee optimality, they often suffer from poor anytime be-
havior—meaning they struggle to find high-quality decision
trees quickly when the search is stopped before comple-
tion—due to unbalanced search space exploration. To ad-
dress this, several anytime extensions of exact methods have
been proposed, such as LDS-DL8.5, Top-k-DL8.5, and Blos-
som, but they have not been systematically compared, mak-
ing it difficult to assess their relative effectiveness. In this pa-
per, we propose CA-DL8.5, a generic, complete, and anytime
beam search algorithm that extends the DL8.5 framework and
unifies some existing anytime strategies. In particular, CA-
DL8.5 generalizes previous approaches LDS-DL8.5 and Top-
k-DL8.5, by allowing the integration of various heuristics
and relaxation mechanisms through a modular design. The
algorithm reuses DL8.5’s efficient branch-and-bound prun-
ing and trie-based caching, combined with a restart-based
beam search that gradually relaxes pruning criteria to improve
solution quality over time. Our contributions are twofold:
(1) We introduce this new generic framework for exact and
anytime decision tree learning, enabling the incorporation
of diverse heuristics and search strategies; (2) We conduct
a rigorous empirical comparison of several instantiations of
CA-DL8.5—based on Purity, Gain, Discrepancy, and Top-
k heuristics—using an anytime evaluation metric called the
primal gap integral. Experimental results on standard classifi-
cation benchmarks show that CA-DL8.5 using LDS (limited
discrepancy) consistently provides the best anytime perfor-
mance, outperforming both other CA-DL8.5 variants and the
Blossom algorithm while maintaining completeness and op-
timality guarantees.

Code — https://anonymous.4open.science/r/cadl85/
Datasets —

https://dtai-static.cs.kuleuven.be/CP4IM/datasets/

Introduction
Decision trees are a fundamental machine learning model,
widely adopted for their interpretability and solid perfor-
mance in domains such as healthcare, finance, and educa-
tion. Classic algorithms like CART (Breiman et al. 1984)

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and C4.5 (Quinlan 2014) induce decision trees greedily, se-
lecting splits in a top-down manner based on local heuristics.
These methods are fast but lack optimality guarantees, and
they often produce suboptimal trees.

Recent years have seen growing interest in exact deci-
sion tree learning algorithms, which aim to find globally
optimal trees, typically minimizing classification error or
another loss function. These algorithms leverage combina-
torial optimization techniques from MILP (Bertsimas and
Dunn 2017; Aghaei, Gómez, and Vayanos 2021), constraint
programming (Verhaeghe et al. 2020), SAT (Narodytska
et al. 2018), and dynamic programming (Aglin, Nijssen, and
Schaus 2020; Demirović et al. 2022). While these meth-
ods offer strong generalization properties (Bertsimas and
Dunn 2017; van der Linden et al. 2024), they tend to suffer
from poor anytime behavior: when interrupted before con-
vergence, they often return poor-quality solutions.

The DL8.5 algorithm (Aglin, Nijssen, and Schaus 2020),
based on dynamic programming and efficient caching, is a
state-of-the-art method for optimal tree induction. DL8.5 ex-
plores the search space in a depth-first fashion, which often
causes it to become stuck in unpromising regions, as illus-
trated in Figure 1. As a result, it may return poor trees when
stopped early. Greedy methods like C4.5 provide quick re-
sults but lack the capacity to improve or guarantee optimality
over time. Neither approach offers the benefits of a true any-
time algorithm, which should return a good initial solution
quickly and improve it continuously as time allows.

To improve the anytime performance or scalability of ex-
act methods, three notable work have been proposed. LDS-
DL8.5 (Kiossou et al. 2022) integrates limited discrepancy
search (LDS) into DL8.5, resulting in an algorithm that is
both anytime and complete. Top-k-DL8.5 (Blanc et al. 2024)
modifies DL8.5 by restricting the candidate features at each
node to the Top-k according to a ranking heuristic. This is
a compromise between C4.5 and DL8.5: faster and more
scalable, but unable to guarantee convergence to the optimal
tree. Finally, the Blossom algorithm (Demirović, Hebrard,
and Jean 2023) follows a fundamentally different search
strategy. It uses a depth-first approach that expands decision
tree nodes level by level, offering improved anytime behav-
ior by avoiding the possible result of highly unbalanced trees
when interrupted early as for DL8.5. Blossom is guaranteed
to find the optimal tree given sufficient time. Despite their

https://orcid.org/0000-0001-6972-9885
https://orcid.org/0000-0003-2678-1266
https://orcid.org/0000-0002-3153-8941
https://anonymous.4open.science/r/cadl85/
https://dtai-static.cs.kuleuven.be/CP4IM/datasets/

Figure 1: DL8.5 explores the leftmost branches first, often
leading to poor anytime performance when interrupted early.

promise, these three approaches have not been systemati-
cally compared in prior work, making it difficult to assess
their relative strengths.

This paper makes two main contributions. First, we in-
troduce CA-DL8.5, a novel algorithm for decision tree learn-
ing that is: complete (guarantees optimality when given suf-
ficient time), anytime (produces high-quality solutions early
and improves them over time), and generic (easily instan-
tiated with different heuristics and strategies). CA-DL8.5
builds upon the Complete Anytime Beam Search (CABS)
framework (Zhang 1998), extending DL8.5 with an itera-
tive weakening strategy that gradually relaxes pruning con-
straints across restarts. It generalizes LDS-DL8.5 and ex-
tends Top-k-DL8.5 to a complete method.

Second, we perform a rigorous empirical study of CA-
DL8.5 under four heuristic strategies: Purity, Gain, Dis-
crepancy, and Top-k. We evaluate these variants using the
primal gap integral metric (Berthold 2013), a principled
anytime evaluation measure that captures performance over
time. Our results show that CA-DL8.5 instantiated with
discrepancy-based search (equivalent to LDS-DL8.5) and
Top-k consistently outperforms other instantiations and also
improves upon the Blossom algorithm.

Overall, our work provides a unified and extensible frame-
work for designing anytime exact decision tree algorithms,
offering both theoretical guarantees and strong empirical
performance. The CA-DL8.5 algorithm opens up new possi-
bilities for combining optimality with real-time responsive-
ness in interpretable machine learning.

Related Works and Background
Greedy approaches Traditional tree-based algorithms,
such as CART (Breiman et al. 1984) and C4.5 (Quin-
lan 2014), construct decision trees using greedy, top-down
splits based on local information. These methods are effi-
cient and scalable but cannot guarantee optimality. To ad-
dress this limitation, several optimization-based approaches
have been proposed: Bertsimas and Dunn (Bertsimas and
Dunn 2017) formulated tree learning as a mixed-integer pro-
gram, while others leveraged SAT (Narodytska et al. 2018),

MaxSAT (Hu et al. 2020), and constraint programming (Ver-
haeghe et al. 2020). Although these methods provide theo-
retical guarantees, they struggle to scale to large datasets or
deeper trees.

Dynamic Programming Approaches and DL8.5. Dy-
namic Programming (DP) methods (Nijssen and Fromont
2007; Aglin, Nijssen, and Schaus 2020; Demirović et al.
2022) improve the scalability of exact decision tree learning.
DL8.5 (Aglin, Nijssen, and Schaus 2020), the foundation of
our work, learns optimal decision trees on binary datasets
D under minimum support and maximum depth constraints.
A binary dataset (D, C) consists of data D ⊆

∏
f∈F{f, f̄}

over boolean features F ; C(x) indicates class labels for all
x ∈ D. For S ⊆ D and feature f , define S(f) = {x ∈
S | f ∈ x} and S(f̄) analogously. A binary decision tree
assigns features to internal nodes and labels edges with f
or f̄ , with each branch representing a root-to-leaf path. For
branch b, S(b) =

⋂
f∈b S(f), and its classification error is

|S(b)| −maxc∈C |Sc(b)|, where C indicates all class labels.
DP-based algorithms such as DL8.5 perform a depth-first

exploration of an OR-AND search tree. As shown in Algo-
rithm alg:dl85, at each node, it selects a feature (OR node)
and recursively explores the two branches {f, f̄} (AND
nodes). The left branch is evaluated first (Line 16) by fil-
tering examples not matching the feature, followed by the
right branch (Line 18) with examples that do. This recur-
sion progressively reduces the dataset and enforces the min-
imum support (Line 14) and maximum depth (Line 7) con-
straints. Subtree errors are computed and combined to obtain
the current tree’s error. Efficiency is enhanced through two
mechanisms: upper-bound pruning (Lines 17 and 19) dis-
cards unpromising branches, and a trie-based cache (Lines 9
and 28) stores previously solved subproblems to avoid re-
dundant computations.

Anytime complete approaches As illustrated in Figure 1,
the recursive depth-first exploration of DL8.5 prioritizes the
leftmost branches of the search tree (solid lines), potentially
delaying the exploration of other promising regions. Con-
sider three binary features a, b, and c: the algorithm may
fully explore the path abc and its variations before consid-
ering alternative feature combinations. With many features
and larger maximum depths, the search can remain trapped
in early subtrees for extended periods, leaving large regions
of the search space such as abc̄, ab̄, and ā (dashed lines) un-
explored until late in the process. This behavior introduces
a key weakness: if interrupted, the algorithm typically pro-
duces an incomplete, unbalanced decision tree, that can be of
lower quality than one built by simple greedy heuristics. To
address this limitation and improve anytime performance,
we propose integrating a complete anytime beam search
strategy into DL8.5, preserving optimality guarantees while
producing high-quality solutions throughout execution.

Recent work has explored improving the anytime behav-
ior of exact decision tree algorithms. Kiossou et al. (Kios-
sou et al. 2022) introduced LDS-DL8.5, which applies iter-
ative Limited Discrepancy Search (LDS) to prioritize solu-
tions close to a heuristic baseline tree. A discrepancy corre-

Figure 2: Search tree for three features. The values at depth 1 represent node error before expansion; at depth 2, they reflect
discrepancy costs.

sponds to selecting a feature different from the one chosen
by a greedy algorithm (e.g., the feature with maximum infor-
mation gain). By gradually increasing the allowed number of
discrepancies along a root-to-leaf path, the algorithm transi-
tions from the greedy tree (zero discrepancies) toward an
exhaustive search. This approach makes the algorithm more
efficient in discovering the best tree. Early discovery of good
decision trees helps prune the search space using the branch-
and-bound techniques of DL8.5. In the worst case, the best
tree found coincides with the greedy tree.

The Blossom algorithm, introduced in (Demirović, He-
brard, and Jean 2023), employs a different search approach
to enhance the anytime behavior of the search. While it also
utilizes depth-first search, it proceeds layer by layer within
the tree, always expanding the non-expanded node that is
closest to the root. Similar to LDS-DL8.5, the first solu-
tion found in the leftmost leaf node of the depth-first search
exploration corresponds to the decision tree that would be
identified by a purely greedy strategy. This characteristic
makes it an improvement in terms of anytime behavior com-
pared to DL8.5.

However, like DL8.5, the Blossom algorithm can also suf-
fer from poor diversification of the search space, particu-
larly concerning features of nodes close to the root. These
features are reconsidered last during backtracking, despite
being selected first and somewhat blindly when limited in-
formation was available for making an informed decision.
To the best of our knowledge, no experiments have yet been
conducted to compare Blossom and LDS-DL8.5.

Anytime incomplete approaches The Top-k method, in-
troduced in (Blanc et al. 2024) is an extension of DL8.5 that
aims at improving its scalability. It shares many similarities
with LDS-DL8.5. Specifically, it heuristically restricts the
set of features tried at each OR-node to the Top-k features, as
determined by some ranking heuristic. The search space to
explore is thus voluntarily limited and therefore this method
can be considered as a trade-off between the pure greedy
C4.5 and the complete search of DL8.5.

Other hybrid methods like LGDT (Kiossou et al. 2024)
balance greedy efficiency with limited depth lookahead
based on exact method to improve solution quality without
the full computational cost of exact methods.

Complete Anytime Beam Search DL8.5
(CADL8.5)

Beam search is an informed search algorithm that explores
a space by keeping only the most promising nodes at
each level. While it improves upon breadth-first and depth-
first search through heuristic pruning, overly aggressive
pruning can cause it to miss solutions. To overcome this,
Zhang (Zhang 1998) introduced Complete Anytime Beam
Search (CABS), based on the principle of iterative weaken-
ing (Provost 1993). CABS performs successive beam search
iterations with progressively relaxed pruning constraints. It
starts with strict pruning, quickly identifying initial solu-
tions, and then gradually weakens the pruning rules to ex-
plore larger portions of the search space. This process en-
ables the algorithm to discover solutions that would have
been pruned in earlier iterations.

This iterative relaxation approach gives CABS two valu-
able properties: (1) it provides anytime behavior by quickly
finding initial solutions that improve over time, and (2) it
ensures completeness by gradually reducing pruning con-
straints until an optimal solution is found. These properties
make CBS particularly well-suited for complex optimization
problems like decision tree learning, where balancing solu-
tion quality with computational efficiency is important.

In this work we propose Complete Anytime DL8.5
(CADL8.5), which adapts the original DL8.5 algorithm by
including CABS ideas. It is a generic framework that guar-
antees high-quality solutions even when terminated early.
By integrating principles from CABS, CADL8.5 guides tree
construction using adaptive pruning rules. These rules are
relaxed over multiple iterations, allowing the algorithm to
prioritize promising regions initially while progressively ex-
ploring more diverse parts of the solution space.

Algorithm 2 presents the structure of CADL8.5. In ad-
dition to the standard inputs required by DL8.5 (dataset D,
minimum support minsup, and maximum depth maxdepth),
CADL8.5 requires one additional parameter: r, the rule or
the set of rules guiding the search space exploration. This
allows the algorithm to balance between quickly finding ini-
tial solutions and ensuring optimality through complete ex-
ploration.

A key difference between DL8.5 and CADL8.5 is the in-
troduction of an outer loop (Lines 6–11) that repeatedly in-
vokes the BeamDL8.5 search procedure while progressively

Algorithm 1: DL8.5
Input : D, minsup, maxdepth
Output: Best tree under the maxdepth and minsup

constraints
1 struct Best{error : float, ub : float, tree : Tree}
2 cache← Trie < branch, Best >
3 solution← DL85− Search(∅, ,+∞)
4 return solution
5 Procedure DL85− Search(b, ub)
6 e← error(b)
7 if |b| = maxdepth or e = 0 then
8 return Best{e, ub, leaf(b)}
9 node← cache.get(b)

10 if node ̸= ∅ and ub ≤ node.ub then
11 return node

12 (τ, best error, child ub)← (∅, +∞, ub)
13 for f in F sorted by a heuristic do
14 if |D(b ∪ {f})| < minsup or |D(b ∪ {f̄})| <

minsup then
15 continue
16 left← DL85− Search(b ∪ {f̄}, child ub)
17 if left.tree = ∅ then continue
18 right←

DL85− Search(b∪{f}, child ub−left.error)
19 if right.tree = ∅ then continue
20

21 e← left.error + right.error
22 if e < child ub then
23 best error ← e
24 child ub← e
25 τ ← Tree(left.tree, right.tree)

26 if e = 0 then break
27 node← Best{best error, ub, τ}
28 cache.save(b, node)
29 return node

relaxing constraints. The algorithm begins with strict prun-
ing rules to rapidly identify a feasible solution that estab-
lishes an initial upper bound on the classification error. After
each iteration, the rules are weakened using the relax func-
tion, expanding the search space. This process continues un-
til one of three conditions is met: a perfect tree is found (zero
error), no further rule relaxation is possible, or the allocated
time budget is exhausted.

To implement this strategy, CADL8.5 introduces two
generic types: T and R. Type T encapsulates state information
required to apply pruning decisions, while R stores the pa-
rameters that define the current rule constraints. These types
are manipulated through five core functions:

• update(t : T, c : Context) → T: modifies a node’s state
based on its context, including error metrics, dataset size,
and feature selection information.

• prune(t : T, r : R) → boolean: evaluates whether a
node should be pruned based on its current state and rule
parameters.

• relax(r : R) → R: incrementally weakens rule con-
straints to permit wider exploration in subsequent iter-

Rule State & Constraint Key Functions

Purity T{purity : float}
R{min purity : float}

update : purity = 1− ctx.e
|ctx.S|

prune : purity ≥ min purity

relax : min purity += δ

Gain T{cum gap : float}
R{max gap : float}

update : cum gap += best gain− gain

prune : cum gap > max gap

relax : max gap += δ

Discrepancy T{tot discr : int}
R{max discr : int}

update : tot discr += ctx.i

prune : tot discr ≥ max discr

relax : max discr += δ

Top-k T{feat idx : int}
R{k : int}

update : feat idx = ctx.i

prune : feat idx ≥ k

relax : k += δ

Table 1: Rule definitions for CADL8.5

ations.
• terminal state(t : T) → T: generates a special state

marking a node as fully explored and exempt from future
pruning.

• initial state(c : Context) → T: creates the initial
state for the root node based on its context.

The search process begins by constructing an initial con-
text c0 at the root, incorporating the dataset’s error measure
and size. This context is passed to initial state to gen-
erate the root’s initial state t0 (Line 5), which is then used
alongside the initial upper bound to start the first BeamDL8.5
search iteration.

At the root of the search space, the initial context c0 is
constructed using the root error and dataset size. This con-
text is then passed to initial state to produce the ini-
tial state t0 (Line 5), which is used to start the first call to
BeamDL8.5 along with the initial upper bound.

During the BeamDL8.5 procedure, each node’s state is
evaluated against the current rule configuration before ex-
pansion. The update function computes an updated state t
based on the node’s context (Lines 27 and 43). This state is
then evaluated using the prune predicate (Line 17) to deter-
mine if the node violates any active constraints. If pruning
conditions are met, the node is not expanded further and is
returned as-is.

Nodes are also not expanded when they reach terminal
conditions: either the maximum tree depth is attained or per-
fect classification (zero error) is achieved. In these cases, the
node is explicitly marked as fully explored by applying the
terminal state function (Line 15). This ensures that ter-
minal nodes are treated as optimal in future caching opera-
tions and pruning decisions, preventing unnecessary recom-
putation of already optimal subtrees.

CADL8.5 extends DL8.5’s caching strategy to avoid re-
dundant computations across iterations. Each branch b is
associated with a Best object that stores the optimal sub-
tree, its error bound, and its state. Before expanding any
node, the cache is queried for previous results. If a com-

Algorithm 2: Complete Anytime DL8.5 (CADL8.5)
Input :D, rule, minsup, maxdepth
Output: Best tree satisfying minsup and maxdepth

1 Struct Best{error : float, ub : float, tree : Tree, state : T}
2 cache← Trie < branch, Best >

3 ub← +∞
4 context0 ←{ i: 0, e: error(∅), s: |D| }
5 state0 ← initial state(context0)

6 do
7 sol← BeamDL8.5(∅, ub, context0, state0)
8 ub← sol.error

9 rule← relax(rule)

10 state0 ← sol.state

11 while sol is not optimal or rule is relaxable
12 return sol.tree

13 Procedure BeamDL8.5(b, ub, contextp, statep)
14 e← error(b)

15 if |b| = maxdepth or e = 0 then
16 return Best{e, ub, leaf(b), terminal state(statep)}

17 if time limit reached or prune(statep, rule) then
18 return Best{e, ub, leaf(b), statep}

19 node← cache.get(b)

20 if node ̸= ∅ and ub ≤ node.ub and
¬prune(node.state, rule) then

21 return node

22 τ ← ∅, child ub← ub, optimal← true

23 foreach (i, f) in F sorted by heuristic do
24 if |D(b ∪ {f})| < minsup or |D(b ∪ {f̄})| < minsup

then
25 continue

26 contextl ←{ i: i, e: error(b ∪ {f̄}), s: |D(b ∪ {f̄})| }
27 statel ← update(statep, contextl)

28 l← BeamDL8.5(b ∪ {f̄}, child ub, contextl, statel)

29 if l.tree = ∅ then
30 continue

31 contextr ←{ i: i, e: error(b ∪ {f}), s: |D(b ∪ {f})| }
32 stater ← update(statep, contextr)

33 r ← BeamDL8.5(b ∪ {f}, child ub−
l.error, contextr, stater)

34 if r.tree = ∅ then
35 continue

36 e← l.error + r.error

37 if prune(l.state, rule) or prune(r.state, rule) then
38 optimal← false

39 if e < child ub then
40 child ub← e

41 τ ← Tree(l.tree, r.tree)

42 contextp.error ← e

43 statep ← update(statep, contextp)

44 if e = 0 then
45 break

46 if optimal then
47 statep ← terminal state(statep)

48 node← Best{child ub, ub, τ, statep}
49 cache.save(b, node)

50 return node

patible cached entry exists—one whose upper bound is con-
sistent with current requirements and not pruned under the
current rule set—the cached result is immediately reused
(Line 20). Additionally, nodes are marked as fully explored
only when all their children have been optimally processed
(Lines 47–49).

To control the exploration cost of nodes in CADL8.5, we
implement four different pruning strategies: the Purity rule,
the Gain rule, the Discrepancy rule, and the Top-k rule. Ta-
ble 1 summarizes these rules using the generic type struc-
tures introduced earlier.

Purity rule
The purity rule defines a minimum purity threshold for the
tree stored in R. A node expansion is stopped when its pu-
rity meets or exceeds this threshold. Weakening the rule in-
volves incrementally increasing the threshold by a value δ
until it reaches a maximum of 1.0. If a node’s purity remains
below the current threshold (prune), the search continues
along that branch until the maximum depth is reached, dur-
ing which purity may improve. Without a depth constraint,
this strategy would attempt to construct a perfect decision
tree. The purity of a branch b is defined as

purity(b) = 1− error(b)

|S(b)|
.

For example, in the search tree of Figure 2, assume 10 exam-
ples fall into each branch at depth 1, with purity(a) = 0.3
and purity(ā) = 0.7. With a threshold of 0.5, branch a is
expanded, whereas ā is not, since it is pure enough.

Gain rule
The gain rule restricts feature expansion using an informa-
tion gain threshold. At a node, let τ∗ be the highest gain and
τ(f) the gain of a feature f . The local gap is τ∗− τ(f), and
each feature maintains a cumulative gap along the path from
the root:

cum gap = cum gapparent + (τ∗ − τ(f)).

A feature is expanded only if cum gap ≤ max gap. Set-
ting max gap = 0 yields a greedy strategy similar to C4.5,
while larger values allow broader exploration. The cumula-
tive constraint naturally tightens at deeper levels, focusing
the search and avoiding excessive exploration of suboptimal
branches.

Discrepancy rule
The Discrepancy rule employs the same principle of Lim-
ited Discrepancy Search (LDS) as in the LDS-DL8.5 algo-
rithm (Kiossou et al. 2022), to control deviations from a pre-
ferred exploration order. Each node tracks the total discrep-
ancy tot discr accumulated from the root, where each fea-
ture is assigned an index i based on its position in the candi-
date list. The discrepancy of a path thus reflects how many
times the search deviated from the leftmost option.

At each node, only features whose associated cost does
not exceed the threshold max discr are considered. For ex-
ample, exploring only the leftmost feature at each split (with

Runtime (s)
Approach Sub 15 30 60 120 240 300

C4.5 – 64.3 64.3 64.3 64.3 64.3 64.3

Top-3 – 46.3 45.0 44.4 44.1 44.0 44.0

Top-5 – 37.5 35.2 34.3 33.8 33.6 33.5

DL8.5 – 46.6 40.4 34.6 31.5 29.5 28.8

Blossom – 27.1 24.7 19.6 14.5 9.6 8.5

CA-Purity – 48.8 42.5 36.8 31.6 27.7 26.7

CA-Gain
exponential 43.7 36.3 32.2 29.2 26.4 24.7
luby 42.8 35.9 31.5 25.5 22.0 21.2
monotonic 43.2 36.6 32.3 26.2 22.5 21.5

CA-Discrepancy
exponential 29.1 23.2 18.6 15.8 13.0 11.4
luby 27.2 20.7 16.7 13.9 9.2 7.8
monotonic 27.4 20.8 16.7 14.0 8.8 7.4

CA-Top-k
exponential 34.9 30.6 24.9 20.0 17.5 16.8
luby 32.7 25.4 20.5 17.3 14.0 12.0
monotonic 31.1 23.5 19.0 16.3 13.4 11.3

CA-Top-k∗
exponential 34.4 27.2 23.3 17.0 12.7 11.4
luby 31.0 25.4 18.0 12.2 8.5 7.7
monotonic 31.2 25.6 18.4 12.2 8.6 7.7

Table 2: Average primal integral on depth 6

Runtime (s)
Approach Sub 15 30 60 120 240 300

C4.5 – 69.3 69.3 69.3 69.3 69.3 69.3

Top-3 – 52.9 51.7 51.1 50.8 50.7 50.6

Top-5 – 46.8 41.0 38.5 37.2 36.6 36.5

DL8.5 – 58.3 52.0 47.2 43.9 40.4 39.5

Blossom – 37.1 30.5 24.7 21.5 18.6 17.2

CA-Purity – 55.9 50.0 45.7 43.2 40.7 39.7

CA-Gain
exponential 50.5 45.3 39.1 35.5 33.0 32.5
luby 54.7 51.4 45.6 41.7 38.0 36.9
monotonic 55.1 51.6 46.2 41.9 39.3 38.5

CA-Discrepancy
exponential 33.0 28.3 25.0 22.8 19.3 17.8
luby 31.3 26.9 22.8 19.0 15.1 14.0
monotonic 31.5 26.5 22.5 19.0 15.1 14.0

CA-Top-k
exponential 41.8 34.5 28.5 25.1 22.4 21.1
luby 39.4 31.2 25.3 22.1 19.1 18.0
monotonic 37.7 29.7 24.2 20.8 17.6 16.6

CA-Top-k∗
exponential 41.8 36.7 33.9 31.3 27.7 26.6
luby 39.6 34.7 30.7 26.7 23.4 22.3
monotonic 41.8 35.8 31.3 26.9 23.8 22.6

Table 3: Average primal integral on depth 7

max discr = 0) results in a greedy tree. Increasing the dis-
crepancy budget expands the search space and enables ex-
ploring other parts of the space search.

As illustrated in Figure 2, if feature A is explored first,
then cost(a) = cost(ā) = 0. Choosing B instead at the
same level requires cost(b) = cost(b̄) = 1. Similarly,
deeper paths such as ba and bā have cost = 1 since A is
the first successor of b, and cost = 2 for branches like bc
since C is the second.

Top-k rule
The Top-k rule controls the breadth of the search by lim-
iting the number of features explored at each node. It con-
siders only the k best candidates, where the position of a
feature in the sorted list determines its index ctx.i. When
k = 1, the algorithm behaves greedily, producing trees sim-
ilar to CART or C4.5 depending on the heuristic used. As k
increases, more features are evaluated per node, expanding
the search space and allowing corrections to early decisions.
We also propose a new variant, denoted as Top-k* in the re-
sults, where the beam width k is halved at each level of the
tree, with a minimum value of one. This allows to reduce the
time spent in the deeper parts of the search space in early it-
erations.

Unlike the Discrepancy rule, Top-k and Top-k∗ rules do
not accumulate costs across the tree. The feature index is lo-
cal to the node and does not depend on the path. A node
is pruned if its feature index exceeds the current thresh-
old k, unless marked as terminal. The relaxation function
increments k, progressively weakening the pruning con-
dition. The state tracks the index of the selected feature
(feat idx), and pruning is bypassed when this index is

set to ∞, used as a sentinel for terminal nodes.

Results
To evaluate the performance of CADL8.5, we conducted a
series of experiments. This section presents the results. We
begin by analyzing the anytime behavior of CADL8.5 using
the previously mentioned rules, followed by a comparison
of its performance in finding optimal solutions. All experi-
ments were conducted on 25 datasets from CP4IM, with a
minimum support threshold of 1. The algorithms were exe-
cuted on a server equipped with an Intel Xeon Platinum 8160
CPU and 320 GB of RAM, running Rocky Linux version
8.4. For comparison, we include a scikit-learn implemen-
tation of C4.51, DL8.5 and Blossom implementations. We
compare CADL8.5 to the other algorithms using the average
primal integral, as introduced in (Berthold 2013) to measure
the anytime behavior of optimization solvers. The primal in-
tegral aims to measure the progress of an algorithm’s primal
bound convergence toward the optimal (or best known) so-
lution over the entire solving time. It is based on the primal
function p(t), which represents the gap between the current
solution x(t) at time t and the optimal or best known solu-
tion xopt. The primal gap of a solution x(t) is defined as

γ(x(t)) =
|x(t)− xopt|

|x(t)|
.

The function p(t) equals 1 if no feasible solution has been
found by time t, and γ(x(t)) otherwise. The function p(t)
is a step function that changes whenever a new feasible so-
lution is found. It is monotonically decreasing and becomes

1https://scikit-learn.org/

https://scikit-learn.org/

zero once the optimal solution is reached. The primal inte-
gral P (T) is defined as the integral of the primal gap func-
tion p(t) over the time horizon T :

P (T) =

∫ T

0

p(t) dt =

n∑
i=1

p(ti−1) · (ti − ti−1),

where each ti denotes a time point at which a new incum-
bent solution is found. The primal integral encourages the
early discovery of high-quality solutions. If a better solution
is found at the same time, P (tmax) decreases. Similarly, if
the same solution is found earlier, P (tmax) also decreases.
The ratio P (tmax)/tmax can be interpreted as the average
quality of the solution during the search process. A smaller
value indicates a higher expected quality of the current so-
lution if the algorithm is interrupted at an arbitrary point in
time.

Tables 2 and 3 report the evolution of the average primal
integral across various time budgets (from 15 to 300 sec-
onds) for tree depths 6 and 7. To ensure meaningful com-
parisons, we exclude datasets where DL8.5 finds the opti-
mal solution in under 1 second. For the Gain, Discrepancy,
and Top-k rule strategies, we evaluate three approaches
to relax the rules between restarts: Monotonic, where the
threshold is increased by a fixed amount (set to 1 in our
experiments); Exponential, where the threshold is multi-
plied by a constant factor (2 in our experiments). We also
use Luby, where the increment follows the Luby sequence
from (Lorenz 2021). Across both depths, all complete any-
time strategies outperform DL8.5, highlighting the benefits
of rule-based restarting. The best overall results are achieved
by CA-Discrepancy (Luby and Monotonic) and CA-Top-
k∗, especially under longer time budgets. At depth 6, CA-
Discrepancy with monotonic relaxation achieves the low-
est average primal integral of 7.4 at 300s, while CA-Top-k∗
reaches 7.7.

Under short timeouts (15–30s), Blossom produces high
quality early solutions, often outperforming CADL8.5 vari-
ants. However, CADL8.5 quickly catches up and surpasses
Blossom as runtime increases. This trend becomes more pro-
nounced at depth 7 (Table 3), where CA-Discrepancy with
Monotonic and Luby relaxation achieves average primal in-
tegral values of 14.0, better than Blossom’s 17.2 at 300s.
These improvements are largely due to the increased diver-
sification in its search strategy, exploring more parts of the
search space, whereas Blossom tends to remain focused on
optimizing the deeper layers of a specific tree before moving
elsewhere.

Among all rules, Discrepancy consistently outperforms
the others. CA-Top-k and its variant CA-Top-k∗ also per-
form well, particularly at large timeouts. CA-Gain and CA-
Purity lag behind: the Gain rule often selects larger subtrees,
leading to longer subsearches; Purity may require several in-
effective relaxations before contributing to meaningful di-
versification.

Greedy baselines such as C4.5, Top-3, and Top-5 deliver
quick but static solutions. Among them, Top-5 performs best
under tight time budgets (15–30s), briefly outperforming
DL8.5. However, none of the greedy methods improve their
solutions over time.

0 50 100 150 200 250 300
Time (s)

8

10

12

14

In
st

an
ce

s S
ol

ve
d

CA-Purity (12)
DL8.5 (11)
Blossom (13)

CA-Gain (13)
CA-Discrepancy (14)

CA-Top-k (15)
CA-Top-k * (15)

Figure 3: Cumulative number of instances solved as a func-
tion of time with the total number of instances solved by
each approach within 300s

Figure 3 illustrates the cumulative termination count of
each algorithm to find and prove optimality within a time
budget of 300s and a depth constraint of 5. Overall, the
CADL8.5 variants demonstrate superior solving power com-
pared to DL8.5 and Blossom. Notably, CA-Top-k∗ solves
the most instances (15 out of 25) and does so more quickly
than the other methods across most of the timeline. CA-
Discrepancy and CA-Top-k also perform strongly, solv-
ing 14 and 15 instances respectively, and surpassing other
approaches beyond the 50-second mark. Blossom shows
a steep initial rise, indicating strong early performance,
but plateaus sooner than the CADL8.5 variants. CA-Gain
achieves a similar final count as Blossom (13 instances) but
shows slower progress in the early phase. DL8.5 and CA-
Purity underperform both in terms of speed and total solved
instances, solving only 11 and 12 datasets respectively. This
shows that CADL8.5 variants especially Top-k(*) and Dis-
crepancy does not compromise the ability to reach optimal
solutions.

Conclusion

In this paper, we introduced CADL8.5, a complete any-
time framework for decision tree learning that generalizes
DL8.5, LDS-DL8.5, and Top-k. It combines DL8.5’s ef-
ficient branch-and-bound pruning and trie-based caching
with a restart-based search that progressively relaxes prun-
ing criteria, guided by rule based strategies such as node
purity, Information Gain gap, Discrepancy and Top-k. Our
experiments show that CADL8.5 variants, especially CA-
Top-k∗ and CA-Discrepancy, deliver strong anytime perfor-
mance without sacrificing the ability to reach optimal solu-
tions. They solve more instances to optimality than DL8.5
and Blossom and perform at least on par with greedy ap-
proaches, while improving solution quality over time. Fu-
ture work includes exploring combined rule strategies such
as Gain and Discrepancy.

References
Aghaei, S.; Gómez, A.; and Vayanos, P. 2021. Strong opti-
mal classification trees. arXiv preprint arXiv:2103.15965.
Aglin, G.; Nijssen, S.; and Schaus, P. 2020. Learning opti-
mal decision trees using caching branch-and-bound search.
In Proceedings of AAAI, volume 34, 3146–3153.
Berthold, T. 2013. Measuring the impact of primal heuris-
tics. Operations Research Letters, 41(6): 611–614.
Bertsimas, D.; and Dunn, J. 2017. Optimal classification
trees. Machine Learning, 106: 1039–1082.
Blanc, G.; Lange, J.; Pabbaraju, C.; Sullivan, C.; Tan, L.;
and Tiwari, M. 2024. Harnessing the power of choices in
decision tree learning. In Advances in Neural Information
Processing Systems, volume 36.
Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C. 1984.
Classification and regression trees, volume 37. Wadsworth
Int. Group.
Demirović, E.; Hebrard, E.; and Jean, L. 2023. Blossom:
an anytime algorithm for computing optimal decision trees.
In International Conference on Machine Learning, 7533–
7562.
Demirović, E.; et al. 2022. MurTree: Optimal Decision
Trees via Dynamic Programming and Search. Journal of
Machine Learning Research, 23: 1–47.
Hu, H.; et al. 2020. Learning optimal decision trees with
MaxSAT and its integration in AdaBoost. In IJCAI-PRICAI
2020.
Kiossou, H.; et al. 2022. Time constrained dl8.5 using lim-
ited discrepancy search. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases,
443–459.
Kiossou, H.; et al. 2024. Efficient Lookahead Decision
Trees. In International Symposium on Intelligent Data Anal-
ysis, 133–144.
Lorenz, J.-H. 2021. Restart strategies in a continuous set-
ting. Theory of Computing Systems, 65(8): 1143–1164.
Narodytska, N.; et al. 2018. Learning Optimal Decision
Trees with SAT. In IJCAI, 1362–1368.
Nijssen, S.; and Fromont, E. 2007. Mining optimal decision
trees from itemset lattices. In KDD, 530–539.
Provost, F. 1993. Iterative weakening: Optimal and near-
optimal policies for the selection of search bias. In Pro-
ceedings of the Eleventh National Conference on Artificial
Intelligence, 749–755.
Quinlan, J. 2014. C4.5: Programs for machine learning.
Elsevier.
van der Linden, J. G.; Vos, D.; de Weerdt, M. M.; Verwer, S.;
and Demirović, E. 2024. Optimal or Greedy Decision Trees?
Revisiting their Objectives, Tuning, and Performance. arXiv
e-prints, arXiv–2409.
Verhaeghe, H.; et al. 2020. Learning optimal decision trees
using constraint programming. Constraints, 25: 226–250.
Zhang, W. 1998. Complete anytime beam search. In
AAAI/IAAI, 425–430.

	Introduction
	Related Works and Background
	Complete Anytime Beam Search DL8.5 (CADL8.5)
	Purity rule
	Gain rule
	Discrepancy rule
	Top-k rule

	Results
	Conclusion

