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Abstract

Finding an optimal decision tree that minimizes classifica-
tion error is known to be NP-hard. While exact algorithms
based on MILP, CP, SAT, or dynamic programming guar-
antee optimality, they often suffer from poor anytime be-
havior—meaning they struggle to find high-quality decision
trees quickly when the search is stopped before comple-
tion—due to unbalanced search space exploration. To ad-
dress this, several anytime extensions of exact methods have
been proposed, such as LDS-DLS.5, Top-k-DL38.5, and Blos-
som, but they have not been systematically compared, mak-
ing it difficult to assess their relative effectiveness. In this pa-
per, we propose CA-DLS.5, a generic, complete, and anytime
beam search algorithm that extends the DL8.5 framework and
unifies some existing anytime strategies. In particular, CA-
DL38.5 generalizes previous approaches LDS-DLS8.5 and Top-
k-DL8.5, by allowing the integration of various heuristics
and relaxation mechanisms through a modular design. The
algorithm reuses DL8.5’s efficient branch-and-bound prun-
ing and trie-based caching, combined with a restart-based
beam search that gradually relaxes pruning criteria to improve
solution quality over time. Our contributions are twofold:
(1) We introduce this new generic framework for exact and
anytime decision tree learning, enabling the incorporation
of diverse heuristics and search strategies; (2) We conduct
a rigorous empirical comparison of several instantiations of
CA-DL8.5—based on Purity, Gain, Discrepancy, and Top-
k heuristics—using an anytime evaluation metric called the
primal gap integral. Experimental results on standard classifi-
cation benchmarks show that CA-DLS8.5 using LDS (limited
discrepancy) consistently provides the best anytime perfor-
mance, outperforming both other CA-DL8.5 variants and the
Blossom algorithm while maintaining completeness and op-
timality guarantees.

Code — https://anonymous.4open.science/r/cadl85/

Datasets —
https://dtai-static.cs.kuleuven.be/CP4IM/datasets/

Introduction

Decision trees are a fundamental machine learning model,
widely adopted for their interpretability and solid perfor-
mance in domains such as healthcare, finance, and educa-
tion. Classic algorithms like CART (Breiman et al.|{1984)
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and C4.5 (Quinlan/2014)) induce decision trees greedily, se-
lecting splits in a top-down manner based on local heuristics.
These methods are fast but lack optimality guarantees, and
they often produce suboptimal trees.

Recent years have seen growing interest in exact deci-
sion tree learning algorithms, which aim to find globally
optimal trees, typically minimizing classification error or
another loss function. These algorithms leverage combina-
torial optimization techniques from MILP (Bertsimas and
Dunn|2017; |Aghaei, Gomez, and Vayanos|2021)), constraint
programming (Verhaeghe et al.2020), SAT (Narodytska
et al.[2018), and dynamic programming (Aglin, Nijssen, and
Schaus| [2020; [Demirovi¢ et al.|[2022). While these meth-
ods offer strong generalization properties (Bertsimas and
Dunn|[2017; van der Linden et al|2024)), they tend to suffer
from poor anytime behavior: when interrupted before con-
vergence, they often return poor-quality solutions.

The DL8.5 algorithm (Aglin, Nijssen, and Schaus||2020),
based on dynamic programming and efficient caching, is a
state-of-the-art method for optimal tree induction. DL8.5 ex-
plores the search space in a depth-first fashion, which often
causes it to become stuck in unpromising regions, as illus-
trated in Figure[T] As a result, it may return poor trees when
stopped early. Greedy methods like C4.5 provide quick re-
sults but lack the capacity to improve or guarantee optimality
over time. Neither approach offers the benefits of a true any-
time algorithm, which should return a good initial solution
quickly and improve it continuously as time allows.

To improve the anytime performance or scalability of ex-
act methods, three notable work have been proposed. LDS-
DLS8.5 (Kiossou et al.|2022) integrates limited discrepancy
search (LDS) into DL8.5, resulting in an algorithm that is
both anytime and complete. Top-k-DLS8.5 (Blanc et al.[2024))
modifies DL8.5 by restricting the candidate features at each
node to the Top-k according to a ranking heuristic. This is
a compromise between C4.5 and DL8.5: faster and more
scalable, but unable to guarantee convergence to the optimal
tree. Finally, the Blossom algorithm (Demirovi¢, Hebrard,
and Jean| 2023) follows a fundamentally different search
strategy. It uses a depth-first approach that expands decision
tree nodes level by level, offering improved anytime behav-
ior by avoiding the possible result of highly unbalanced trees
when interrupted early as for DL8.5. Blossom is guaranteed
to find the optimal tree given sufficient time. Despite their
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Figure 1: DL8.5 explores the leftmost branches first, often
leading to poor anytime performance when interrupted early.

promise, these three approaches have not been systemati-
cally compared in prior work, making it difficult to assess
their relative strengths.

This paper makes two main contributions. First, we in-
troduce CA-DLS8.5, a novel algorithm for decision tree learn-
ing that is: complete (guarantees optimality when given suf-
ficient time), anytime (produces high-quality solutions early
and improves them over time), and generic (easily instan-
tiated with different heuristics and strategies). CA-DLS8.5
builds upon the Complete Anytime Beam Search (CABS)
framework (Zhang||1998), extending DL8.5 with an itera-
tive weakening strategy that gradually relaxes pruning con-
straints across restarts. It generalizes LDS-DL8.5 and ex-
tends Top-k-DLS8.5 to a complete method.

Second, we perform a rigorous empirical study of CA-
DL8.5 under four heuristic strategies: Purity, Gain, Dis-
crepancy, and Top-k. We evaluate these variants using the
primal gap integral metric (Berthold|[2013), a principled
anytime evaluation measure that captures performance over
time. Our results show that CA-DLS8.5 instantiated with
discrepancy-based search (equivalent to LDS-DLS8.5) and
Top-k consistently outperforms other instantiations and also
improves upon the Blossom algorithm.

Overall, our work provides a unified and extensible frame-
work for designing anytime exact decision tree algorithms,
offering both theoretical guarantees and strong empirical
performance. The CA-DL8.5 algorithm opens up new possi-
bilities for combining optimality with real-time responsive-
ness in interpretable machine learning.

Related Works and Background

Greedy approaches Traditional tree-based algorithms,
such as CART (Breiman et al.||1984) and C4.5 (Quin-
lan|2014), construct decision trees using greedy, top-down
splits based on local information. These methods are effi-
cient and scalable but cannot guarantee optimality. To ad-
dress this limitation, several optimization-based approaches
have been proposed: Bertsimas and Dunn (Bertsimas and
Dunn|2017) formulated tree learning as a mixed-integer pro-
gram, while others leveraged SAT (Narodytska et al.|[2018),

MaxSAT (Hu et al.|2020), and constraint programming (Ver-
haeghe et al.|[2020). Although these methods provide theo-
retical guarantees, they struggle to scale to large datasets or
deeper trees.

Dynamic Programming Approaches and DL8.5. Dy-
namic Programming (DP) methods (Nijssen and Fromont
2007; |Aglin, Nijssen, and Schaus|2020; Demirovic et al.
2022)) improve the scalability of exact decision tree learning.
DLS8.5 (Aglin, Nijssen, and Schaus|2020), the foundation of
our work, learns optimal decision trees on binary datasets
D under minimum support and maximum depth constraints.
A binary dataset (D, C) consists of data D C erf{f, f}
over boolean features F; C(z) indicates class labels for all
z € D.For § C D and feature f, define S(f) = {z €
S| f € z} and S(f) analogously. A binary decision tree
assigns features to internal nodes and labels edges with f
or f, with each branch representing a root-to-leaf path. For
branch b, S(b) = (¢, S(f), and its classification error is
|S(b)] — max.cc|Se(b)|, where C indicates all class labels.

DP-based algorithms such as DL8.5 perform a depth-first
exploration of an OR-AND search tree. As shown in Algo-
rithm alg:dI85, at each node, it selects a feature (OR node)
and recursively explores the two branches {f, f} (AND
nodes). The left branch is evaluated first (Line by fil-
tering examples not matching the feature, followed by the
right branch (Line [I8) with examples that do. This recur-
sion progressively reduces the dataset and enforces the min-
imum support (Line [I4) and maximum depth (Line[7) con-
straints. Subtree errors are computed and combined to obtain
the current tree’s error. Efficiency is enhanced through two
mechanisms: upper-bound pruning (Lines [I7] and [T9) dis-
cards unpromising branches, and a trie-based cache (Lines[9]
and stores previously solved subproblems to avoid re-
dundant computations.

Anytime complete approaches As illustrated in Figure[]
the recursive depth-first exploration of DL8.5 prioritizes the
leftmost branches of the search tree (solid lines), potentially
delaying the exploration of other promising regions. Con-
sider three binary features a, b, and c: the algorithm may
fully explore the path abc and its variations before consid-
ering alternative feature combinations. With many features
and larger maximum depths, the search can remain trapped
in early subtrees for extended periods, leaving large regions
of the search space such as abé, ab, and a (dashed lines) un-
explored until late in the process. This behavior introduces
a key weakness: if interrupted, the algorithm typically pro-
duces an incomplete, unbalanced decision tree, that can be of
lower quality than one built by simple greedy heuristics. To
address this limitation and improve anytime performance,
we propose integrating a complete anytime beam search
strategy into DL8.5, preserving optimality guarantees while
producing high-quality solutions throughout execution.
Recent work has explored improving the anytime behav-
ior of exact decision tree algorithms. Kiossou et al. (Kios-
sou et al.|2022) introduced LDS-DL8.5, which applies iter-
ative Limited Discrepancy Search (LDS) to prioritize solu-
tions close to a heuristic baseline tree. A discrepancy corre-
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Figure 2: Search tree for three features. The values at depth 1 represent node error before expansion; at depth 2, they reflect

discrepancy costs.

sponds to selecting a feature different from the one chosen
by a greedy algorithm (e.g., the feature with maximum infor-
mation gain). By gradually increasing the allowed number of
discrepancies along a root-to-leaf path, the algorithm transi-
tions from the greedy tree (zero discrepancies) toward an
exhaustive search. This approach makes the algorithm more
efficient in discovering the best tree. Early discovery of good
decision trees helps prune the search space using the branch-
and-bound techniques of DL8.5. In the worst case, the best
tree found coincides with the greedy tree.

The Blossom algorithm, introduced in (Demirovi¢, He-
brard, and Jean||2023)), employs a different search approach
to enhance the anytime behavior of the search. While it also
utilizes depth-first search, it proceeds layer by layer within
the tree, always expanding the non-expanded node that is
closest to the root. Similar to LDS-DLS.5, the first solu-
tion found in the leftmost leaf node of the depth-first search
exploration corresponds to the decision tree that would be
identified by a purely greedy strategy. This characteristic
makes it an improvement in terms of anytime behavior com-
pared to DL8.5.

However, like DL8.5, the Blossom algorithm can also suf-
fer from poor diversification of the search space, particu-
larly concerning features of nodes close to the root. These
features are reconsidered last during backtracking, despite
being selected first and somewhat blindly when limited in-
formation was available for making an informed decision.
To the best of our knowledge, no experiments have yet been
conducted to compare Blossom and LDS-DL8.5.

Anytime incomplete approaches The Top-£ method, in-
troduced in (Blanc et al.|[2024) is an extension of DLS&.5 that
aims at improving its scalability. It shares many similarities
with LDS-DLS.5. Specifically, it heuristically restricts the
set of features tried at each OR-node to the Top-k features, as
determined by some ranking heuristic. The search space to
explore is thus voluntarily limited and therefore this method
can be considered as a trade-off between the pure greedy
C4.5 and the complete search of DL8.5.

Other hybrid methods like LGDT (Kiossou et al.[[2024])
balance greedy efficiency with limited depth lookahead
based on exact method to improve solution quality without
the full computational cost of exact methods.

Complete Anytime Beam Search DL8.5
(CADLS.S)

Beam search is an informed search algorithm that explores
a space by keeping only the most promising nodes at
each level. While it improves upon breadth-first and depth-
first search through heuristic pruning, overly aggressive
pruning can cause it to miss solutions. To overcome this,
Zhang (Zhang|[1998) introduced Complete Anytime Beam
Search (CABS), based on the principle of iterative weaken-
ing (Provost|1993). CABS performs successive beam search
iterations with progressively relaxed pruning constraints. It
starts with strict pruning, quickly identifying initial solu-
tions, and then gradually weakens the pruning rules to ex-
plore larger portions of the search space. This process en-
ables the algorithm to discover solutions that would have
been pruned in earlier iterations.

This iterative relaxation approach gives CABS two valu-
able properties: (1) it provides anytime behavior by quickly
finding initial solutions that improve over time, and (2) it
ensures completeness by gradually reducing pruning con-
straints until an optimal solution is found. These properties
make CBS particularly well-suited for complex optimization
problems like decision tree learning, where balancing solu-
tion quality with computational efficiency is important.

In this work we propose Complete Anytime DLS8.5
(CADLS.5), which adapts the original DL8.5 algorithm by
including CABS ideas. It is a generic framework that guar-
antees high-quality solutions even when terminated early.
By integrating principles from CABS, CADLS.5 guides tree
construction using adaptive pruning rules. These rules are
relaxed over multiple iterations, allowing the algorithm to
prioritize promising regions initially while progressively ex-
ploring more diverse parts of the solution space.

Algorithm [2] presents the structure of CADLS.5. In ad-
dition to the standard inputs required by DL8.5 (dataset D,
minimum support minsup, and maximum depth maxdepth),
CADLS.5 requires one additional parameter: r, the rule or
the set of rules guiding the search space exploration. This
allows the algorithm to balance between quickly finding ini-
tial solutions and ensuring optimality through complete ex-
ploration.

A key difference between DL8.5 and CADLS.5 is the in-
troduction of an outer loop (Lines that repeatedly in-
vokes the BeamDL8.5 search procedure while progressively



Algorithm 1: DL8.5

Rule State & Constraint Key Functions

Input :D, minsup, maxdepth
Output: Best tree under the maxdepth and minsup
constraints

1 struct Best{error : float, ub : float,tree : Tree}
2 cache < T'rie < branch, Best >

3 solution < DL85 — Search(), ,+00)

4 return solution

5 Procedure DL85 — Search (b, ub)

6 e+ error(b)

7 if |b| = maxdepth or e = 0 then

8 | returnBest{e, ub, leaf(b)}

9 node < cache.get(b)

10 if node # () and ub < node.ub then

11 | return node

12 (7, best_error, child-ub) < (0, +oo, ub)

13 for f in F sorted by a heuristic do

14 if DbU{f})| <minsupor |DOU{Sf})| <

minsup then

15 | continue

16 left < DL85 — Search(b U { f}, child_ub)
17 if le ft.tree = () then continue

18 right <

DL85 — Search(bU{ f}, child_.ub—left.error)

19 if right.tree = () then continue

20

21 e < left.error 4+ right.error

2 if e < child_ub then

23 best_error < e

24 child_ub < e

25 T < Tree(left.tree, right.tree)

26 if e = 0 then break
27 node <+ Best{best_error, ub, 7}
28 cache.save(b, node)
29 return node

relaxing constraints. The algorithm begins with strict prun-
ing rules to rapidly identify a feasible solution that estab-
lishes an initial upper bound on the classification error. After
each iteration, the rules are weakened using the relax func-
tion, expanding the search space. This process continues un-
til one of three conditions is met: a perfect tree is found (zero
error), no further rule relaxation is possible, or the allocated
time budget is exhausted.

To implement this strategy, CADLS.5 introduces two
generic types: T and R. Type T encapsulates state information
required to apply pruning decisions, while R stores the pa-
rameters that define the current rule constraints. These types
are manipulated through five core functions:

* update(t: T,c: Context) — T: modifies a node’s state
based on its context, including error metrics, dataset size,
and feature selection information.

* prune(t : T,r : R) — boolean: evaluates whether a
node should be pruned based on its current state and rule
parameters.

» relax(r : R) — R: incrementally weakens rule con-
straints to permit wider exploration in subsequent iter-

Purity T{purity : float} update : purity = 1 — ‘ztz‘{:;‘

R{min purity : float} prune : purity > min_purity

relax : min_purity +=9

Gain T{cum_gap : float} update : cum_gap += best_gain — gain

R{max.gap : float} prune : cum_gap > max_gap
relax : max-gap += 9§

Discrepancy T{tot,discr : int} update : tot_discr +=ctx.i
R{max.discr : int} prune : tot_.discr > max.discr

relax : max.discr +=9§

Top-k T{feat_idx : int} update : feat_idx = ctx.i
R{k : int} prune : feat_idx > k

relax: k+=6

Table 1: Rule definitions for CADLS.5

ations.

* terminal state(t : T) — T: generates a special state
marking a node as fully explored and exempt from future
pruning.

* initial_state(c : Context) — T: creates the initial
state for the root node based on its context.

The search process begins by constructing an initial con-
text cq at the root, incorporating the dataset’s error measure
and size. This context is passed to initial_state to gen-
erate the root’s initial state ¢y (Line [5), which is then used
alongside the initial upper bound to start the first BeamDL8.5
search iteration.

At the root of the search space, the initial context ¢ is
constructed using the root error and dataset size. This con-
text is then passed to initial_state to produce the ini-
tial state ¢o (Line [5)), which is used to start the first call to
BeamDL38.5 along with the initial upper bound.

During the BeamDL8.5 procedure, each node’s state is
evaluated against the current rule configuration before ex-
pansion. The update function computes an updated state ¢
based on the node’s context (Lines [27] and [43). This state is
then evaluated using the prune predicate (Line to deter-
mine if the node violates any active constraints. If pruning
conditions are met, the node is not expanded further and is
returned as-is.

Nodes are also not expanded when they reach terminal
conditions: either the maximum tree depth is attained or per-
fect classification (zero error) is achieved. In these cases, the
node is explicitly marked as fully explored by applying the
terminal state function (Line[I3). This ensures that ter-
minal nodes are treated as optimal in future caching opera-
tions and pruning decisions, preventing unnecessary recom-
putation of already optimal subtrees.

CADLS.5 extends DL8.5’s caching strategy to avoid re-
dundant computations across iterations. Each branch b is
associated with a Best object that stores the optimal sub-
tree, its error bound, and its state. Before expanding any
node, the cache is queried for previous results. If a com-



Algorithm 2: Complete Anytime DL8.5 (CADLS.5)

e % N N R W N =

e e
R = =

13

15
16

17
18

19
20

21

22
23
24

25

26
27
28
29
30

31
32
33

34
35

36
37
38

39
40
4
42
43

44
45

46
47

48
49
50

Input : D, rule, minsup, maxdepth

Output: Best tree satisfying minsup and maxdepth

Struct Best{error : float, ub : float, tree : Tree, state : T}
cache <— Trie < branch, Best >

ub < +oco

contexty <+ {i:0,e: error(0),s: |D| }

stateg < initial_state(contexty)

do

sol < BeamDL8.5(0, ub, contexto, stateg)
ub < sol.error

rule < relax(rule)

stateg < sol.state

while sol is not optimal or rule is relaxable

return sol.tree

Procedure BeamDL8 . 5(b, ub, contexty, statep)

e « error(b)
if |b| = maxdepthor e = 0 then
L return Best{e, ub, leaf(b), terminal_state(statey)}

if time limit reached or prune(state,, rule) then
L return Best {e, ub, leaf(b), statep }

node < cache.get(b)

if node # 0 and ub < node.ub and
—prune(node.state, rule) then
L return node

7 < 0, child-ub < ub, optimal < true

foreach (i, f) in F sorted by heuristic do

if [ D(bU {f})| < minsupor |D(bU {f})| < minsup
then
L continue

context; « {i:ri,e:error(bU {f}),s: | DU {f}|}
state; <— update(state,, context;)
I + BeamDL8.5(b U {f}, child_ub, context,, state;)
if l.tree = () then

L continue

context, < {i:i,e:error(bU{f}),s: | D(bU{f})|}
state, < update(statep, context,.)
r < BeamDL8.5(b U {f}, child-ub —
l.error, context,, state,.)
if r.tree = () then

L continue

e + l.error + r.error
if prune(l.state, rule) or prune(r.state, rule) then
L optimal < false

if e < child_ub then
child_ub < e
7 < Tree(l.tree, r.tree)
contexty.error <— e

state, < update(statep, contexty)

if e = O then
L break

if optimal then
L state, < terminal_state(statep)

node < Best{child_ub, ub, T, statep }
cache.save(b, node)
return node

patible cached entry exists—one whose upper bound is con-
sistent with current requirements and not pruned under the
current rule set—the cached result is immediately reused
(Line [20). Additionally, nodes are marked as fully explored
only when all their children have been optimally processed
(Lines F7H49).

To control the exploration cost of nodes in CADLS.5, we
implement four different pruning strategies: the Purity rule,
the Gain rule, the Discrepancy rule, and the Top-k rule. Ta-
ble [T] summarizes these rules using the generic type struc-
tures introduced earlier.

Purity rule

The purity rule defines a minimum purity threshold for the
tree stored in R. A node expansion is stopped when its pu-
rity meets or exceeds this threshold. Weakening the rule in-
volves incrementally increasing the threshold by a value §
until it reaches a maximum of 1.0. If a node’s purity remains
below the current threshold (prune), the search continues
along that branch until the maximum depth is reached, dur-
ing which purity may improve. Without a depth constraint,
this strategy would attempt to construct a perfect decision
tree. The purity of a branch b is defined as

) error(b)
purity(b) =1 — |S(b)(
For example, in the search tree of Figure[2} assume 10 exam-
ples fall into each branch at depth 1, with purity(a) = 0.3
and purity(a) = 0.7. With a threshold of 0.5, branch « is
expanded, whereas a is not, since it is pure enough.

Gain rule

The gain rule restricts feature expansion using an informa-
tion gain threshold. At a node, let 7* be the highest gain and
7(f) the gain of a feature f. The local gap is 7* — 7(f), and
each feature maintains a cumulative gap along the path from
the root:

cum_gap = CUm-gap e + (7" = 71(f))-

A feature is expanded only if cum_gap < max_gap. Set-
ting max_gap = 0 yields a greedy strategy similar to C4.5,
while larger values allow broader exploration. The cumula-
tive constraint naturally tightens at deeper levels, focusing
the search and avoiding excessive exploration of suboptimal
branches.

Discrepancy rule

The Discrepancy rule employs the same principle of Lim-
ited Discrepancy Search (LDS) as in the LDS-DLS8.5 algo-
rithm (Kiossou et al.[2022)), to control deviations from a pre-
ferred exploration order. Each node tracks the total discrep-
ancy tot_discr accumulated from the root, where each fea-
ture is assigned an index 7 based on its position in the candi-
date list. The discrepancy of a path thus reflects how many
times the search deviated from the leftmost option.

At each node, only features whose associated cost does
not exceed the threshold max_discr are considered. For ex-
ample, exploring only the leftmost feature at each split (with



Runtime (s)

Runtime (s)

Approach Sub 15 30 60 120 240 300 Approach Sub 15 30 60 120 240 300
C4.5 - 643 643 643 643 643 643 C4.5 - 693 693 693 693 693 693
Top-3 - 463 450 444 441 44.0 440 Top-3 - 529 517 511 508  50.7 506
Top-5 - 375 352 343 338 336 335 Top-5 - 46.8 41.0 385 372 366 365
DL8.5 - 466 404 346 315 295 288 DL8.5 - 583 520 472 439 404 395
Blossom - 271 247 19.6 14.5 9.6 8.5 Blossom - 37.1 30,5 247 215 18.6 17.2
CA-Purity - 488 425 368 31.6 277 267 CA-Purity - 559 50.0 457 432 407 397

exponential ~ 43.7  36.3 322 292 264 247
CA-Gain luby 428 359 315 255 220 212
monotonic 432 366 323 262 225 215

exponential ~ 50.5  45.3 39.1 355 33.0 325
CA-Gain luby 547 514 456 417 380 369
monotonic 55.1 51.6 462 419 39.3 38.5

exponential ~ 29.1 232 18.6 15.8 13.0 11.4
CA-Discrepancy  luby 272 207 16.7 13.9 9.2 7.8
monotonic 274 20.8 16.7 14.0 8.8 7.4

exponential  33.0 283 250 228 19.3 17.8
CA-Discrepancy  luby 313 269 228 190 151 14.0
monotonic 315 205 225 190 151 14.0

exponential 349  30.6 249  20.0 17.5 16.8
CA-Top-k luby 327 254 205 17.3 14.0 12.0
monotonic 31.1 235 19.0 16.3 13.4 11.3

exponential  41.8 345 285 251 224 211
CA-Top-k luby 394 312 253 221 19.1 18.0
monotonic 377 297 242 208 17.6 16.6

exponential 344 272 233 17.0 12.7 11.4
CA-Top-k™ luby 31.0 254 180 122 8.5 7.7
monotonic 31.2 25.6 18.4 12.2 8.6 7.7

exponential  41.8 367 339 313 277 266
CA-Top-k™ luby 39.6 347 307 267 234 223
monotonic 418 358 313 269 238 226

Table 2: Average primal integral on depth 6

max_discr = 0) results in a greedy tree. Increasing the dis-
crepancy budget expands the search space and enables ex-
ploring other parts of the space search.

As illustrated in Figure [2] if feature A is explored first,
then cost(a) = cost(@) = 0. Choosing B instead at the
same level requires cost(b) = cost(b) = 1. Similarly,
deeper paths such as ba and ba have cost = 1 since A is
the first successor of b, and cost = 2 for branches like be

since C'is the second.

Top-k rule

The Top-k rule controls the breadth of the search by lim-
iting the number of features explored at each node. It con-
siders only the %k best candidates, where the position of a
feature in the sorted list determines its index ctx.i. When
k = 1, the algorithm behaves greedily, producing trees sim-
ilar to CART or C4.5 depending on the heuristic used. As k
increases, more features are evaluated per node, expanding
the search space and allowing corrections to early decisions.
We also propose a new variant, denoted as Top-k* in the re-
sults, where the beam width & is halved at each level of the
tree, with a minimum value of one. This allows to reduce the
time spent in the deeper parts of the search space in early it-
erations.

Unlike the Discrepancy rule, Top-k and Top-k* rules do
not accumulate costs across the tree. The feature index is lo-
cal to the node and does not depend on the path. A node
is pruned if its feature index exceeds the current thresh-
old k, unless marked as terminal. The relaxation function
increments k, progressively weakening the pruning con-
dition. The state tracks the index of the selected feature
(feat_idx), and pruning is bypassed when this index is

Table 3: Average primal integral on depth 7

set to oo, used as a sentinel for terminal nodes.

Results

To evaluate the performance of CADLS.5, we conducted a
series of experiments. This section presents the results. We
begin by analyzing the anytime behavior of CADLS.5 using
the previously mentioned rules, followed by a comparison
of its performance in finding optimal solutions. All experi-
ments were conducted on 25 datasets from CP4IM, with a
minimum support threshold of 1. The algorithms were exe-
cuted on a server equipped with an Intel Xeon Platinum 8160
CPU and 320 GB of RAM, running Rocky Linux version
8.4. For comparison, we include a scikit-learn implemen-
tation of C4.ﬂ DL8.5 and Blossom implementations. We
compare CADLS.S to the other algorithms using the average
primal integral, as introduced in (Berthold|2013) to measure
the anytime behavior of optimization solvers. The primal in-
tegral aims to measure the progress of an algorithm’s primal
bound convergence toward the optimal (or best known) so-
lution over the entire solving time. It is based on the primal
Sunction p(t), which represents the gap between the current
solution x(¢) at time ¢ and the optimal or best known solu-
tion 2opi. The primal gap of a solution x(t) is defined as

- |z (t) — xnpt|

The function p(t) equals 1 if no feasible solution has been
found by time ¢, and ~y(x(t)) otherwise. The function p(t)
is a step function that changes whenever a new feasible so-
lution is found. It is monotonically decreasing and becomes

"https://scikit-learn.org/
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zero once the optimal solution is reached. The primal inte-
gral P(T) is defined as the integral of the primal gap func-
tion p(t) over the time horizon T

T n
P(T):/O p(t)dt:Zp(ti_l)~(t,;—ti_1),

where each ¢; denotes a time point at which a new incum-
bent solution is found. The primal integral encourages the
early discovery of high-quality solutions. If a better solution
is found at the same time, P(tyax) decreases. Similarly, if
the same solution is found earlier, P(¢;,.x) also decreases.
The ratio P(tmax)/tmax can be interpreted as the average
quality of the solution during the search process. A smaller
value indicates a higher expected quality of the current so-
lution if the algorithm is interrupted at an arbitrary point in
time.

Tables [2] and [3| report the evolution of the average primal
integral across various time budgets (from 15 to 300 sec-
onds) for tree depths 6 and 7. To ensure meaningful com-
parisons, we exclude datasets where DL8.5 finds the opti-
mal solution in under 1 second. For the Gain, Discrepancy,
and Top-k rule strategies, we evaluate three approaches
to relax the rules between restarts: Monotonic, where the
threshold is increased by a fixed amount (set to 1 in our
experiments); Exponential, where the threshold is multi-
plied by a constant factor (2 in our experiments). We also
use Luby, where the increment follows the Luby sequence
from (Lorenz|2021). Across both depths, all complete any-
time strategies outperform DLS8.5, highlighting the benefits
of rule-based restarting. The best overall results are achieved
by CA-Discrepancy (Luby and Monotonic) and CA-Top-
k*, especially under longer time budgets. At depth 6, CA-
Discrepancy with monotonic relaxation achieves the low-
est average primal integral of 7.4 at 300s, while CA-Top-k*
reaches 7.7.

Under short timeouts (15-30s), Blossom produces high
quality early solutions, often outperforming CADLS.5 vari-
ants. However, CADLS.5 quickly catches up and surpasses
Blossom as runtime increases. This trend becomes more pro-
nounced at depth 7 (Table [3), where CA-Discrepancy with
Monotonic and Luby relaxation achieves average primal in-
tegral values of 14.0, better than Blossom’s 17.2 at 300s.
These improvements are largely due to the increased diver-
sification in its search strategy, exploring more parts of the
search space, whereas Blossom tends to remain focused on
optimizing the deeper layers of a specific tree before moving
elsewhere.

Among all rules, Discrepancy consistently outperforms
the others. CA-Top-k and its variant CA-Top-k* also per-
form well, particularly at large timeouts. CA-Gain and CA-
Purity lag behind: the Gain rule often selects larger subtrees,
leading to longer subsearches; Purity may require several in-
effective relaxations before contributing to meaningful di-
versification.

Greedy baselines such as C4.5, Top-3, and Top-5 deliver
quick but static solutions. Among them, Top-5 performs best
under tight time budgets (15-30s), briefly outperforming
DL8.5. However, none of the greedy methods improve their
solutions over time.
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Figure 3: Cumulative number of instances solved as a func-
tion of time with the total number of instances solved by
each approach within 300s

Figure [3| illustrates the cumulative termination count of
each algorithm to find and prove optimality within a time
budget of 300s and a depth constraint of 5. Overall, the
CADLS.5 variants demonstrate superior solving power com-
pared to DL8.5 and Blossom. Notably, CA-Top-k* solves
the most instances (15 out of 25) and does so more quickly
than the other methods across most of the timeline. CA-
Discrepancy and CA-Top-k also perform strongly, solv-
ing 14 and 15 instances respectively, and surpassing other
approaches beyond the 50-second mark. Blossom shows
a steep initial rise, indicating strong early performance,
but plateaus sooner than the CADLS.5 variants. CA-Gain
achieves a similar final count as Blossom (13 instances) but
shows slower progress in the early phase. DL8.5 and CA-
Purity underperform both in terms of speed and total solved
instances, solving only 11 and 12 datasets respectively. This
shows that CADLS.5 variants especially Top-k(*) and Dis-
crepancy does not compromise the ability to reach optimal
solutions.

Conclusion

In this paper, we introduced CADLS.5, a complete any-
time framework for decision tree learning that generalizes
DL8.5, LDS-DLS8.5, and Top-k. It combines DL8.5’s ef-
ficient branch-and-bound pruning and trie-based caching
with a restart-based search that progressively relaxes prun-
ing criteria, guided by rule based strategies such as node
purity, Information Gain gap, Discrepancy and Top-k. Our
experiments show that CADLS.5 variants, especially CA-
Top-k* and CA-Discrepancy, deliver strong anytime perfor-
mance without sacrificing the ability to reach optimal solu-
tions. They solve more instances to optimality than DL8.5
and Blossom and perform at least on par with greedy ap-
proaches, while improving solution quality over time. Fu-
ture work includes exploring combined rule strategies such
as Gain and Discrepancy.
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